12,936 research outputs found

    Compositional imprints in density-distance-time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation

    Get PDF
    We use an end-to-end model of planet formation, thermodynamic evolution, and atmospheric escape to investigate how the statistical imprints of evaporation depend on the bulk composition of planetary cores (rocky vs. icy). We find that the population-wide imprints like the location of the "evaporation valley" in the distance-radius plane and the corresponding bimodal radius distribution clearly differ depending on the bulk composition of the cores. Comparison with the observed position of the valley (Fulton et al. 2017) suggests that close-in low-mass Kepler planets have a predominately Earth-like rocky composition. Combined with the excess of period ratios outside of MMR, this suggests that low-mass Kepler planets formed inside of the water iceline, but still undergoing orbital migration. The core radius becomes visible for planets losing all primordial H/He. For planets in this "triangle of evaporation" in the distance-radius plane, the degeneracy in compositions is reduced. In the observed diagram, we identify a trend to more volatile-rich compositions with increasing radius (R/R_Earth3: H/He). The mass-density diagram contains important information about formation and evolution. Its characteristic broken V-shape reveals the transitions from solid planets to low-mass core-dominated planets with H/He and finally to gas-dominated giants. Evaporation causes density and orbital distance to be anti-correlated for low-mass planets, in contrast to giants, where closer-in planets are less dense, likely due to inflation. The temporal evolution of the statistical properties reported here will be of interest for the PLATO 2.0 mission which will observe the temporal dimension.Comment: 24 pages, 12 figures. Accepted in ApJ. Minor changes relative to v

    Top-squark mixing effects in the supersymmetric electroweak corrections to top quark production at the Tevatron

    Get PDF
    Taking into account the mixing effects between left- and right-handed top-squarks, we calculate the genuine supersymmetric eletroweak correction to top quark production at the Tevatron in the minimal supersymmetric model. The analytic expressions of the corrections to both the parton level cross section and the total hadronic cross section are presented. Some numerical examples are also given to show the size of the corrections.Comment: 11 pages, 3 figures, available at reques

    Mechanism of phonon localized edge modes

    Full text link
    The phonon localized edge modes are systematically studied, and two conditions are proposed for the existence of the localized edge modes: (I) coupling between different directions (xx, yy or zz) in the interaction; (II) different boundary conditions in three directions. The generality of these two conditions is illustrated by different lattice structures: one-dimensional (1D) chain, 2D square lattice, 2D graphene, 3D simple cubic lattice, 3D diamond structure, etc; and with different potentials: valence force field model, Brenner potential, etc.Comment: 5 pages, 8 fig

    Graphene-based tortional resonator from molecular dynamics simulation

    Full text link
    Molecular dynamics simulations are performed to study graphene-based torsional mechanical resonators. The quality factor is calculated by QF=ωτ/2πQ_{F}=\omega\tau/2\pi, where the frequency ω\omega and life time τ\tau are obtained from the correlation function of the normal mode coordinate. Our simulations reveal the radius-dependence of the quality factor as QF=2628/(22R1+0.004R2)Q_{F}=2628/(22R^{-1}+0.004R^{2}), which yields a maximum value at some proper radius RR. This maximum point is due to the strong boundary effect in the torsional resonator, as disclosed by the temperature distribution in the resonator. Resulting from the same boundary effect, the quality factor shows a power law temperature-dependence with power factors bellow 1.0. The theoretical results supply some valuable information for the manipulation of the quality factor in future experimental devices based on the torsional mechanical resonator.Comment: (accepted by EPL). New email address for Jin-Wu Jiang after 22/Nov/2011: [email protected]

    Why edge effects are important on the intrinsic loss mechanisms of graphene nanoresonators?

    Full text link
    Molecular dynamics simulations are performed to investigate edge effects on the quality factor of graphene nanoresonators with different edge configurations and of various sizes. If the periodic boundary condition is applied, very high quality factors (3×1053\times10^{5}) are obtained for all kinds of graphene nanoresonators. However, if the free boundary condition is applied, quality factors will be greatly reduced by two effects resulting from free edges: the imaginary edge vibration effect and the artificial effect. Imaginary edge vibrations will flip between a pair of doubly degenerate warping states during the mechanical oscillation of nanoresonators. The flipping process breaks the coherence of the mechanical oscillation of the nanoresonator, which is the dominant mechanism for extremely low quality factors. There is an artificial effect if the mechanical oscillation of the graphene nanoresonator is actuated according to an artificial vibration (non-natural vibration of the system), which slightly reduce the quality factor. The artificial effect can be eliminated by actuating the mechanical oscillation according to a natural vibration of the nanoresonator. Our simulations provide an explanation for the recent experiment, where the measured quality factor is low and varies between identical samples with free edges.Comment: accepted by J. Appl. Phy

    A theoretical study of thermal conductivity in single-walled boron nitride nanotubes

    Full text link
    We perform a theoretical investigation on the thermal conductivity of single-walled boron nitride nanotubes (SWBNT) using the kinetic theory. By fitting to the phonon spectrum of boron nitride sheet, we develop an efficient and stable Tersoff-derived interatomic potential which is suitable for the study of heat transport in sp2 structures. We work out the selection rules for the three-phonon process with the help of the helical quantum numbers (κ,n)(\kappa, n) attributed to the symmetry group (line group) of the SWBNT. Our calculation shows that the thermal conductivity κph\kappa_{\rm ph} diverges with length as κphLβ\kappa_{\rm ph}\propto L^{\beta} with exponentially decaying β(T)eT/Tc\beta(T)\propto e^{-T/T_{c}}, which results from the competition between boundary scattering and three-phonon scattering for flexure modes. We find that the two flexure modes of the SWBNT make dominant contribution to the thermal conductivity, because their zero frequency locates at κ=±α\kappa=\pm\alpha where α\alpha is the rotational angle of the screw symmetry in SWBNT.Comment: accepted by PR

    Self-repairing in single-walled carbon nanotubes by heat treatment

    Full text link
    Structure transformation by heat treatment in single-walled carbon nanotubes (SWCNT) is investigated using molecular dynamics simulation. The critical temperature for the collapse of pure SWCNT is as high as 4655 K due to strong covalent carbon-carbon bonding. Above 2000 K, the cross section of SWCNT changes from circle to ellipse. The self-repairing capability is then investigated and two efficient processes are observed for the SWCNT to repair themselves. (1) In the first mechanism, vacancy defects aggregate to form a bigger hole, and a bottleneck junction is constructed nearby. (2) In the second mechanism, a local curvature is generated around the isolate vacancy to smooth the SWCNT. Benefit from the powerful self-repairing capability, defective SWCNT can seek a stable configuration at high temperatures; thus the critical temperature for collapse is insensitive to the vacancy defect density.Comment: accepted by Journal of Applied Physic

    Elastic and non-linear stiffness of graphene: a simple approach

    Full text link
    The recent experiment [Science \textbf{321}, 385 (2008)] on the Young's modulus and third-order elastic stiffness of graphene are well explained in a very simple approach, where the graphene is described by a simplified system and the force constant for the non-linear interaction is estimated from the Tersoff-Brenner potential.Comment: 4 pages, 4 figure
    corecore